Model Comparison Framework

Side-by-side comparison of major AI models across performance, cost, capabilities, and deployment options.

This framework provides systematic comparison of major AI models across key decision criteria. Use these tables and matrices to evaluate providers objectively based on your specific requirements, budget, and constraints.

Quick Reference: Model Selection by Use Case

Use CaseTop ChoiceAlternativeBudget Option
Software DevelopmentClaude Sonnet 4.5OpenAI o3DeepSeek-R1
General-Purpose ProductionGPT-4oGemini 2.5 FlashDeepSeek-V3
Complex Reasoning/MathOpenAI o3DeepSeek-R1o3-mini
High-Volume ProcessingGemini 2.5 FlashDeepSeek-V3Gemini Flash-Lite
Multimodal (Video/Audio)Gemini 2.5 ProGPT-4oGemini Flash
Large Document AnalysisGemini 2.5 Pro (1M context)Llama 4 Scout (10M context)Gemini Flash
Customer Support ChatbotsClaude Sonnet 4.5GPT-4oDeepSeek-V3
Content GenerationClaude Sonnet 4.5GPT-4oDeepSeek-V3
Real-Time Web InformationGrok 3/4Implement RAGwith any modelGrok 3 Mini
Data Sovereignty RequiredLlama 4 (self-hosted)Mistral (self-hosted)DeepSeek (self-hosted)
European GDPR-NativeMistralLlama 4 (EU deployment)Self-hosted options
Academic/ResearchDeepSeek-R1o3-miniLlama 4 (free)

Performance Comparison

General Capabilities

ModelMMLU (Knowledge)HumanEval (Coding)Intelligence IndexBest Strength
Gemini 2.5 ProHighStrong68 (highest)Multimodal, long context
OpenAI o3Very High69.1% SWE-bench66 (o3-mini high)Advanced reasoning
Claude Sonnet 4.5High77.2% SWE-benchStrongBest coding
GPT-4o88.7%87.2%StrongBalanced, multimodal
DeepSeek-R1StrongCompetitive60Math reasoning (97.3% MATH-500)
DeepSeek-V3CompetitiveGoodGoodCost-performance
Gemini 2.5 FlashGoodGoodCompetitivePrice-performance

Specialized Performance

Mathematics & Scientific Reasoning:

  1. DeepSeek-R1 (97.3% MATH-500, 79.8% AIME 2024)
  2. OpenAI o3 (91.6% AIME 2024)
  3. OpenAI o1 (74.3% AIME 2024)

Software Engineering (SWE-bench Verified):

  1. Claude Sonnet 4.5 (77.2%)
  2. OpenAI o3 (69.1%)
  3. OpenAI o1 (48.9%)

Multimodal Processing:

  1. Gemini 2.5 Pro (video, audio, long-form)
  2. GPT-4o (balanced multimodal)
  3. Claude Sonnet 4.5 (text + image)

Context Window Comparison

ModelContext WindowPractical CapacityBest For
Llama 4 Scout10,000,000 tokens~7,500 pagesEntire book series, massive codebases
Gemini 2.5 Pro/Flash1,000,000 tokens1,000-page PDF, hour-long videoLarge documents, comprehensive code repos
Claude Sonnet 4.5 (premium)1,000,000 tokensExtended pricing >200KLarge documents with premium
Grok 4256,000 tokens~190 pagesStandard documents
GPT-4o, o-series128,000-200,000 tokens~95-150 pagesMost business documents
DeepSeek R1/V3128,000 tokens~95 pagesStandard use cases
Claude Sonnet 4.5 (standard)200,000 tokens~150 pagesMost documents without premium

Key Insight: For documents >200K tokens, Gemini (1M) or Llama 4 (10M) eliminate chunking complexity. For most use cases, 128-200K sufficient.

Pricing Comparison

Per Million Tokens (Input / Output)

Ultra-Budget Tier:

ModelInputOutputCost Level
Gemini 2.5 Flash (<128K)$0.075$0.30β˜… Lowest
DeepSeek-V3$0.27$1.10β˜… Very Low
Grok 3 Mini$0.30$0.50β˜… Very Low

Budget Tier:

ModelInputOutputCost Level
Mistral Medium 3$0.40$2.00Low
DeepSeek-R1 (direct API)$0.55$2.19Low
Claude 3.5 Haiku$0.80$4.00Low-Mid
o3-mini / o4-mini$1.10$4.40Low-Mid

Mid-Tier:

ModelInputOutputCost Level
Gemini 2.5 Pro (<200K)$1.25-2.50$10-15Mid
DeepSeek-R1 (Azure)$2.36$2.36Mid
GPT-4o$3-5$10-15Mid
Claude Sonnet 4.5 (<200K)$3$15Mid
Grok 3$3$15Mid

Premium Tier:

ModelInputOutputCost Level
GPT-4 Turbo$10$30High
Claude 3 Opus$15$75Very High

Ultra-Premium (Reasoning):

ModelInputOutputCost Level
OpenAI o1$150$600Ultra-High
OpenAI o3$1,000+ per taskVariesExtreme

Cost Multiplier Comparison (vs Gemini Flash Baseline)

Taking Gemini Flash as baseline ($0.075 input):

ModelInput Cost MultiplierOutput Cost Multiplier
Gemini Flash1x (baseline)1x (baseline)
DeepSeek-V33.6x3.7x
Grok 3 Mini4x1.7x
DeepSeek-R1 (direct)7.3x7.3x
o3-mini14.7x14.7x
DeepSeek-R1 (Azure)31.5x7.9x
GPT-4o40-67x33-50x
Claude Sonnet 4.540x50x
OpenAI o12,000x2,000x

Key Insight: Gemini Flash and DeepSeek-V3 are 40-50x cheaper than premium models for general tasks. Whether premium justifies cost depends on whether specialized capabilities (coding, reasoning) deliver proportional value.

Cost-Performance Analysis

Price-Performance Leaders

Best Tokens per Dollar (Research-Based):

  1. Llama 4 Scout (self-hosted on CentML): ~430 points per dollar
  2. Alibaba QwQ-32B (Deepinfra): ~414 points per dollar
  3. Llama 4 Maverick (CentML): ~255 points per dollar
  4. Gemini 2.5 Flash: Exceptional value for API-based
  5. DeepSeek-V3: Best general-purpose budget option

Value by Use Case:

High-Volume General Tasks: Gemini Flash (lowest API cost, 1M context) Reasoning on Budget: DeepSeek-R1 (98% cheaper than o-series) Coding on Budget: DeepSeek-R1 or Claude Haiku Self-Hosted Value: Llama 4, Mistral (zero licensing)

When Premium Pricing Justified

Premium models (GPT-4o, Claude Sonnet 4.5, Gemini Pro) justify cost when:

  • Output quality directly impacts revenue (customer-facing, brand-critical)
  • Developer productivity gains exceed API costs (coding with Claude saves 5-10 hours/week)
  • Specialized capability unavailable elsewhere (Claude SWE-bench, o-series reasoning)
  • Risk/compliance require established provider track record
  • Speed to market matters more than cost optimization

Budget models (Flash, DeepSeek-V3) make sense when:

  • Processing millions of tokens daily (savings compound dramatically)
  • General tasks don’t require specialized capabilities
  • Internal tools where “good enough” acceptable
  • Experimentation and learning (reduce financial risk)
  • Volume justifies investment in optimization

Deployment Options Comparison

API-Based Models (SaaS)

ProviderDirect APIAzure AI FoundryAWS BedrockGoogle Vertex AI
OpenAIβœ“βœ“ (primary path)βœ—βœ—
Anthropic Claudeβœ“Limitedβœ“ (primary enterprise)βœ“
Google Geminiβœ“βœ—βœ—βœ“ (primary enterprise)
DeepSeekβœ“βœ“ (R1 only)βœ—βœ—
Mistralβœ“βœ“βœ“βœ“

Self-Hosted Options

ModelLicenseSelf-HostingInfrastructure Need
Llama 4Community (permissive)βœ“Single GPU (Scout); substantial (Behemoth)
MistralApache 2.0βœ“Moderate
DeepSeekAvailableβœ“Multiple GPUs for full model
OpenAI GPTProprietaryβœ—N/A
ClaudeProprietaryβœ—N/A
GeminiProprietaryβœ—N/A

Key Insight: Only open-source models (Llama, Mistral, DeepSeek) support self-hosting. Organizations requiring data sovereignty must use these options.

Feature Comparison Matrix

FeatureGPT-4oClaude 4.5Gemini ProDeepSeek-R1Llama 4 Scout
Text GenerationExcellentExcellentExcellentVery GoodVery Good
CodingVery GoodBest (77.2%)GoodVery GoodGood
MathematicsGoodGoodGoodBest (97.3%)Good
Reasoningo-seriesExtended thinkingThinking modeBest valueGood
MultimodalExcellentGoodBest (video)βœ—Yes
Context Window128K200K (1M premium)1M128K10M
Real-Time Webβœ—βœ—βœ—βœ—βœ—
Self-Hostedβœ—βœ—βœ—βœ“βœ“
CostMidMidLow (Flash)LowestFree (infra only)

Compliance & Data Sovereignty

GDPR Compliance (EU)

ProviderGDPR CompliantEU Data ResidencyNotes
Mistralβœ“ (native)βœ“European company, GDPR-native
Claude (AWS Bedrock EU)βœ“βœ“Via AWS EU regions
Gemini (Vertex EU)βœ“βœ“Via Google Cloud EU regions
OpenAI (Azure EU)βœ“βœ“Via Azure EU regions
DeepSeek (Azure)βœ“βœ“Via Azure, not direct API
Llama 4 (self-hosted)βœ“βœ“Full control

HIPAA Compliance (US Healthcare)

ProviderHIPAA CompliantBAA AvailableNotes
OpenAI (Azure)βœ“βœ“Via Azure OpenAI Service only
Claude (AWS Bedrock)βœ“βœ“AWS Bedrock with BAA
Gemini (Vertex AI)βœ“βœ“Google Cloud with BAA
DeepSeek (Azure)βœ“βœ“ (via Microsoft)Azure AI Foundry
OpenAI (direct API)βœ—βœ—Not HIPAA-compliant
Llama 4 (self-hosted)βœ“N/AFull control, you manage

Critical: For HIPAA, use cloud platform deployments (Azure, AWS, Google) with BAA, not direct APIs.

Government Access Concerns

ProviderJurisdictionGovernment Access RiskMitigation
OpenAIUSUS Cloud Act appliesAzure deployment; self-hosted alternatives
AnthropicUSUS Cloud Act appliesAWS/Google deployment; self-hosted alternatives
GoogleUSUS Cloud Act appliesVertex AI controls; self-hosted alternatives
DeepSeek (direct)ChinaChinese government potential accessUse Azure deployment
DeepSeek (Azure)US (Azure)Data in Azure, not ChinaMitigates China concerns
MistralEU (France)EU jurisdictionBetter for EU sovereignty
Llama 4 (self-hosted)Your jurisdictionNone (on-premise)Maximum sovereignty

Key Insight: For maximum data sovereignty, only self-hosted options (Llama, Mistral, DeepSeek) eliminate third-party government access risk.

Decision Framework: Choosing Your AI Model

Step 1: Identify Non-Negotiable Constraints

Data Sovereignty:

  • Must stay on-premise? β†’ Llama 4, Mistral, or DeepSeek self-hosted only
  • EU residency required? β†’ Mistral or cloud deployments in EU regions
  • HIPAA compliance? β†’ Cloud platforms with BAA (not direct APIs)

Budget:

  • Extremely constrained? β†’ Gemini Flash or DeepSeek-V3
  • Moderate? β†’ Mid-tier models (GPT-4o, Claude, Gemini Pro)
  • Budget flexible for capability? β†’ All options available

Infrastructure:

  • Have GPU infrastructure? β†’ Consider self-hosted Llama/Mistral for volume
  • Cloud-native? β†’ API-based models
  • No technical resources? β†’ Managed APIs only

Step 2: Match Use Case to Model Strengths

Use Decision Table (top of this page) to identify top choices for your primary use case.

Step 3: Evaluate Total Cost of Ownership

Calculate costs at your expected volume:

  • Low volume (<1M tokens/day): Any API works; choose on capability
  • Medium volume (1-10M tokens/day): Cost differences meaningful; consider Flash, DeepSeek
  • High volume (>10M tokens/day): Cost optimization critical; Flash, DeepSeek, or self-hosted

Example TCO (10M tokens/day, 30 days):

  • GPT-4o: $900-1,500/month input + $3,000-4,500/month output = $3,900-6,000/month
  • Claude Sonnet 4.5: $900 input + $4,500 output = $5,400/month
  • DeepSeek-V3: $81 input + $330 output = $411/month (93% savings)
  • Gemini Flash: $22.50 input + $90 output = $112.50/month (98% savings)

At scale, budget options save thousands monthly.

Step 4: Consider Hybrid Strategy

Most organizations benefit from multi-model approach:

Example Enterprise Portfolio:

  • Customer-facing: Claude Sonnet 4.5 (quality, safety)
  • Internal coding: Claude Sonnet 4.5 (SWE-bench leadership)
  • High-volume processing: Gemini Flash (cost)
  • Complex reasoning: DeepSeek-R1 on Azure (cost-effective reasoning)
  • Sensitive data: Self-hosted Llama 4 (sovereignty)

This maximizes value while managing cost and risk.

Summary Recommendations

By Organization Type

Startups (Seed-Series A):

  • Primary: GPT-4o or Gemini Flash (speed vs cost)
  • Volume: DeepSeek-V3 (budget-friendly scaling)
  • Reasoning: o3-mini or DeepSeek-R1 (accessible advanced capability)

Scale-Ups (Series B+):

  • Critical paths: Claude Sonnet 4.5 (coding, quality)
  • High volume: Gemini Flash or self-hosted Llama 4
  • Reasoning: DeepSeek-R1 on Azure
  • Platform: Hybrid (APIs + self-hosted)

Enterprises:

  • Governance: Azure AI Foundry or AWS Bedrock (centralized control)
  • Critical workloads: GPT-4o/Claude via enterprise agreements
  • Sensitive data: Self-hosted Llama 4
  • Volume: Gemini Flash or DeepSeek-V3

Regulated Industries:

  • Primary: Self-hosted Llama 4 or Mistral
  • Compliant cloud: Azure/AWS/Google with BAA (HIPAA)
  • European: Mistral on sovereign cloud

By Primary Use Case

If your #1 need is coding: Claude Sonnet 4.5 (77.2% SWE-bench) If your #1 need is math/reasoning: DeepSeek-R1 or OpenAI o3 If your #1 need is cost optimization: Gemini 2.5 Flash If your #1 need is multimodal: Gemini 2.5 Pro If your #1 need is data sovereignty: Llama 4 self-hosted If your #1 need is large documents: Gemini Pro (1M) or Llama 4 Scout (10M)

Key Takeaways

  1. No single “best” model existsβ€”optimal choice depends on use case, volume, budget, and constraints
  2. Gemini Flash and DeepSeek-V3 democratize AIβ€”world-class capability at 1/40th the cost of premium models
  3. Hybrid strategies maximize valueβ€”combine specialized models for critical paths with budget options for volume
  4. Self-hosted only path to full sovereigntyβ€”Llama 4, Mistral eliminate third-party data access
  5. Context windows matter for architectureβ€”1M-10M contexts eliminate chunking complexity
  6. Compliance requires cloud platformsβ€”HIPAA needs Azure/AWS/Google with BAA, not direct APIs
  7. Cost differences compound at scaleβ€”10M tokens/day = $112/month (Flash) vs $5,400/month (Claude)

Use this framework to build your AI strategy: identify constraints, match use cases to strengths, calculate TCO, and implement hybrid approaches that balance capability, cost, and control.